Authors
Sarah Lauerman, Aves Consulting, LLC, Osceola National Forest
Larry Wood, Wildlife Investigations, LLC, Francis Marion National Forest
Ralph Costa, Ralph Costa’s Woodpecker Outfit (RCWO), LLC, SERPPAS RCW Coordinator

Collaborators
Mark Danaher, Wildlife Biologist, Francis Marion National Forest
David Dorman, Wildlife Biologist, Osceola National Forest

Introduction
Translocations have been a part of the recovery effort for the federally endangered red-cockaded woodpecker (RCW) since the late 1980s (Costa and Kennedy 1994, Hess and Costa 1995). This management tool involves moving RCWs, typically subadult birds, to new locations within or between populations for the purpose of augmenting a single bird group or establishing a new group. Inter-population translocations (hereafter “translocations”) are conducted between donor populations and recipient populations using criteria presented in the Red-cockaded Woodpecker (Picoides borealis) Recovery Plan: Second Revision (Recovery Plan) (U.S. Fish and Wildlife Service 2003).

According to the Recovery Plan, populations qualify as donors when they satisfy one or more of the following criteria: (1) delisted populations that are growing or stable, (2) stable or increasing populations of 100+ active clusters, (3) populations of 50+ active clusters growing at 3% annually and within 75% of their population goal, or (4) populations that have met their property goals. Recipient populations must have a population goal of at least 10 active clusters, have fewer than 30 potential breeding groups (PBGs), and satisfy specific habitat criteria. The importance of translocations in saving small, fragmented, and at-risk populations from extirpation has been clearly demonstrated (Rudolph et al. 1992, Haig et al. 1993, Brown and Simpkins 2004, Hedman et al. 2004, Morris and Werner 2004, Stober and Jack 2004) as well as its effectiveness in reintroducing RCWs into new habitats within its historic range (Hagan and Costa 2001, Hagan et al. 2004). However, the demand for birds from recipient populations has remained higher than the supply from donor populations (Saenz et al. 2002, Costa and DeLotelle 2006).

In 1998, the Southern Range Translocation Cooperative (SRTC) was created to coordinate the distribution of the limited number of RCWs available for translocation in the southeastern portion of the species range. An annual SRTC meeting in Tallahassee,
Florida allocates available RCWs in a modified version of the alternating model described by Saenz et al. (2002). Birds are translocated in groups of 3-5 unrelated, subadult pairs to recipient properties on an alternate year schedule. Although this system may not be the most efficient model for attaining the largest number of RCW groups over the least amount of time, it is one of the better models for balancing population recovery with the prevention of local extirpation (Saenz at al. 2002). This system also allows land managers a predictable schedule in which to prepare recruitment clusters and foraging habitat for anticipated birds.

The SRTC originally consisted of RCW populations from Florida, Georgia, Alabama, and Mississippi. In 2008, with funding from the Southeast Regional Partnership for Planning and Sustainability (SERPPAS), the SRTC expanded to include North Carolina and South Carolina. Along with the regional expansion of SRTC, two new translocation biologist positions at two donor sites were created. The SERPPAS translocation partnership was formed with the Department of Defense (DoD), U.S. Fish and Wildlife Service (USFWS), U.S. Forest Service (USFS), Clemson University (CU), University of Georgia Athens (UGA), and state agencies and organizations from Florida, Georgia, Alabama, North Carolina and South Carolina (see Table 1). The goal of the SERPPAS biologist positions is to provide additional RCWs to the SRTC to speed up the recovery efforts at recipient properties and ultimately bring the RCW closer to delisting. The new SRTC donor sites are the Osceola National Forest (ONF) in Baker and Columbia County, Florida and the Francis Marion National Forest (FMNF) in Charleston and Berkeley County, South Carolina.

Table 1. Partners in the 2008 SERPPAS red-cockaded woodpecker translocation project.

<table>
<thead>
<tr>
<th>Agencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal</td>
</tr>
<tr>
<td>Department of Defense</td>
</tr>
<tr>
<td>U.S. Forest Service</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service</td>
</tr>
<tr>
<td>State</td>
</tr>
<tr>
<td>South Carolina Department of Natural Resources</td>
</tr>
<tr>
<td>Florida Fish and Wildlife Conservation Commission</td>
</tr>
<tr>
<td>Georgia Department of Natural Resources</td>
</tr>
<tr>
<td>Alabama Department of Conservation and Natural Resources</td>
</tr>
<tr>
<td>North Carolina Wildlife Resources Commission</td>
</tr>
<tr>
<td>University of Georgia Athens</td>
</tr>
<tr>
<td>Clemson University</td>
</tr>
</tbody>
</table>
Donor Sites

Osceola National Forest

The ONF is located in the South Atlantic Coastal Plain Recovery Unit (N30 20’, W82 25’), 10 miles east of Lake City, Florida. This 95,641 ha (236,334 ac) property is managed by the USFS, with 37,393 ha (92,400 ac) currently under RCW management.

The ONF RCW population from 1980 through the 1990’s showed a relatively stable trend with little growth as the number of active clusters fluctuated between 43 and 66 (Engstrom et al. 2000). Since 2000, the population has been rapidly increasing (see Figure 1), but there has been an inconsistent history of population monitoring and banding. For several years prior to 2000, population monitoring including some banding was conducted. However, these activities were discontinued after the 2000 breeding season. Monitoring RCW breeding without banding was then resumed in 2005. In 2007, the ONF reached 100 active clusters (97 PBGs) making it eligible as a donor population with an objective of contributing at least 20 birds to the SRTC annually. With the establishment of the SERPPAS biologist position in 2008, RCW banding and more extensive monitoring began for the purpose of translocation. In the 2008 breeding season, the ONF had 112 active clusters (103 PBGs), 5 inactive clusters and 18 recruitment clusters (a total of 135 RCW clusters). From 2005 to 2008, this population grew at an average annual rate of 9%. The ONF has the projected carrying capacity of 462 active clusters and will be considered recovered when the Osceola/Okefenokee Primary Core Recovery population reaches 350 PBGs (USFWS 2003).

Figure 1. Population trend of the active red-cockaded woodpecker clusters on the Osceola National Forest from 1990-2008.
Francis Marion National Forest

The FMNF is located in the Mid-Atlantic Coastal Plain Recovery Unit (N33 7’, W79 41’). This 104,813 ha (259,000 ac) property is managed by the USFS, with 65,508 ha (161,875 ac) currently under RCW management.

The forest supports the third largest RCW population in the United States and is one of 13 designated primary core recovery populations (USFWS 2003). Prior to 1989, the RCW population exceeded 475 groups and was expanding across the FMNF. During the 1970’s and 80’s, the FMNF supported the second largest and only documented naturally increasing population of RCWs (Hooper et al. 1991). However, when hurricane Hugo made landfall on the South Carolina coast in 1989, approximately 63% of the population was lost. The hurricane destroyed 87% of the cavity trees and 59% of the foraging habitat across the forest. Approximately 59% of pine trees greater than or equal to 25 cm (10 in) diameter at breast height were destroyed by Hugo (Watson et al. 1995, Hooper et al. 1990).

Due to aggressive habitat management, more frequent prescribed fires and installation of over 2,700 artificial cavities, the RCW population by 2008 had rebounded to approximately 395 active clusters (see Figure 2). A third of all clusters are monitored annually. Based on the annual monitoring data, the RCW population has shown a marked increase since 2006. As of 2008, there were approximately 378 PBGs, 17 solitary male groups and 65 inactive clusters on the FMNF. It is noteworthy to mention that based on 2008 monitoring results, the FMNF has reached its recovery goal of 350 PBGs, currently harboring 378 PBGs (USFWS 2003). However, the population goal is to maintain 450 active clusters on the FMNF and there are currently 395 active clusters.

The RCW population has continued to expand in some areas of the forest, especially in the central portion, and decline in other areas. Inactive clusters tend to be concentrated in the wild land urban interface (WUI) and/or areas where minimal management has allowed unnatural midstory succession to occur. Of the 65 inactive clusters, approximately 40% are located in or adjacent to pine stands less than 10 years old. Approximately 13 clusters have become inactive since 2005, whereas 15 previously inactive clusters have become active since 2005. Adequate foraging habitat continues to be a recurring issue for the RCW on the forest. The overall outlook for the FMNF RCW population is positive, but the future viability of clusters located in the WUI is a major concern.
Project Objectives

The duties of the newly hired SERPPAS biologists are to monitor and identify surplus RCWs for the translocation effort. Specifically, the following are conducted:

a) Monitor ~100+ RCW groups during the nesting season
b) Band all nestlings of the ~100+ groups producing nestlings
c) Conduct roost cavity checks for all eligible subadults fledgling from ~100+ groups
d) Trap and translocate 20 subadult RCWs from the pool of ~100+ groups monitored

Methods

Osceola and Francis Marion National Forests

Monitoring for RCW breeding began in mid-April. Active clusters were visited weekly to inspect cavity trees for evidence of a nest or nest preparation. Active cavities were determined by fresh chipping on the bark of the tree and recent resin flow (Hooper et al. 1980). Evidence of nesting included fresh wood chips lining the bottom of the cavity or the presence of eggs or nestlings. Nest searching on the ONF was conducted using a TreeTop Peeper IV™ wireless video inspection system (by Sandpiper Technologies, Inc.) on a 15 m (50 ft) Hastings fiberglass extension pole. Nest searching on the FMNF
was conducted using a Cavity Spy video inspection system (designed and manufactured by Wildlife Investigations, LLC). These pole-mounted video camera systems allow remote visual examination of the interior of the cavity to examine nest cavity contents.

When a nest was located it was visited weekly to determine clutch size and age of chicks. Banding was scheduled when chicks were 7-10 days old. Swedish climbing ladders were used to access the nest cavity and chicks were extracted using a noose made of pliable tubing fitted with monofilament loops (Jackson 1982). Chicks were banded with a U.S. Geological Survey aluminum band and a unique color band combination (5 bands) to allow later identification with a spotting scope. Nests were revisited when chicks were approximately 21 days old to determine sex of nestlings (pre-fledge checks) using the video cameras. In the event of nest predation or a complete nest failure, nest searching resumed until the birds re-nested or until July 1 (ONF only; see FMNF below).

RCW groups were followed post-fledging to obtain data on the number of chicks successfully fledged, the sex of individual fledglings and group composition. Selected groups were revisited during dawn and/or dusk to determine the roosting cavity of subadult RCWs. All female subadults found roosting in their natal territory were considered suitable candidates for translocation. Since male RCWs may remain in their natal territories as helpers and increase fledgling success (Lennartz et al. 1987, Walters 1990), subadult males are not translocated from their cluster unless at least one additional non-breeding male is present, in addition to the breeding male.

Translocations were conducted in the fall within the recommended window of September 15-January 1 (USFWS 2003). Each translocation event was 3-4 days long with preparatory roosting before each capture. Recipient populations brought staff and equipment for the translocation and the SERPPAS biologist supplied information on forest orientation, roosting locations of candidate subadults, RCW cluster maps, RCW group composition, and additional equipment and volunteers. All captures were conducted at evening roosts. After a targeted RCW entered its roost cavity, a net on a pole was placed over the cavity entrance. Once the bird flushed into the net it was removed and placed in a transport box. Birds were transported at night and secured in recipient cavities on the evening of their capture. All birds were released from their new cavities the morning following the capture.

Osceola National Forest

The status of all 135 clusters on the ONF was monitored periodically; however 20 clusters were not checked on a regular basis because they remained inactive throughout the season (N=19) or became active after July 1st (N=1). A total of 115 clusters (111 active and 4 inactive clusters) were monitored regularly during the season; the nesting data for these groups is reflective of the entire Osceola RCW population.
Francis Marion National Forest

Prior to the 2008 breeding season (late March and early April), greater than 160 RCW clusters were visited to determine their suitability for monitoring for the translocation project. Following the initial visit, a sub-sample of 126 clusters was chosen to be monitored during the breeding season. The 126 clusters were chosen based on several factors; e.g., ease of access, number of suitable cavities, past breeding history, group size, and spatial location within the forest. The clusters chosen were distributed evenly across the forest so that all quadrants of the forest contained numerous clusters to monitor. However, due to Hurricane Hugo (see Donor Sites above), some areas of the forest contained more optimal potential donor clusters than other portions of the forest. As the breeding season progressed clusters that had a nest depredated or did not nest by approximately mid-May were not monitored further (except one cluster, see Results). Additionally, other clusters were added (from a different forest wide cluster monitoring project) to ensure that a minimum of 100 RCW nests had their nestlings banded.

Results

Osceola National Forest

The 2008 season started with 100 known active clusters and increased to 111 active clusters by July. This increase was due to 8 recruitment clusters becoming active, 1 captured cluster budding and breeding and 2 clusters budding to form 2 new groups. Of the 115 clusters monitored during the season, 103 of them harbored PBGs. Nests were found in 98 groups; 94 groups produced nestlings of banding age and 92 groups produced fledglings. A total of 174 nestlings reached 21 days old; 171 had been banded and were potentially eligible for translocation upon fledging. Of the 174 pre-fledge nestlings, 43% were males (n=75), 50% were females (n=87) and 7% were of unknown sex (n=12). A total of 136 fledglings were observed during post-fledge checks. Seven groups (with a total of 12 possible chicks) were not followed post-fledgling.

In total, the ONF had 135 clusters in the 2008 breeding season (112 active clusters and 23 inactive/recruitment clusters). The population had a mean group size of 2.4 adult RCWs/active cluster. On average, groups which successfully nested (nestlings present at pre-fledge check) produced 1.9 nestlings/nest.

For translocation, 10 male and 10 female subadult RCWs were removed from 18 groups on the ONF. This equaled 11% of the population’s recruitment. The first of four translocations began in early October. Goethe State Forest (Levy/Alachua counties, FL) received 3 pairs of RCWs on October 9. Bull Creek/Triple N Ranch (Osceola County, FL) and Ocala National Forest (Marion County, FL) obtained two pair each on October 16 and 23, respectively. Babcock/Webb Wildlife Management Area (Charlotte County, FL) translocated 3 pairs of birds on November 6. Recipient biologists reported successful releases of all 20 RCWs. The fate of the birds will be assessed in the 2009 breeding season.
Francis Marion National Forest

Of the initial 126 clusters monitored, 16 clusters were removed from monitoring due to late nesting and 6 clusters had eggs that never hatched and were not monitored past the normal hatch date. One cluster was dropped because the nest tree was too dangerous to climb (steep lean with most of the tree base burnt).

A total of 245 nestlings were banded in 103 nests from 102 groups (1 renest) that produced nestlings reaching banding age. Four nests failed after the nestlings had been banded. One of these clusters was again monitored and a single nestling was banded in the subsequent nesting attempt. In the 102 clusters, 249 nestlings reached banding age. Only 245 nestlings were banded because several nests had birds too small to be banded (due to age and size differences in larger clutches) or had nestlings that were extremely difficult to noose without excessive harassment. Of all nestlings, 240 reached 21 days old and these were assumed to have fledged. For groups that fledged young, an average of 2.4 nestlings fledged/nest (N=99). Males constituted 45.8% (N=110) of the fledglings, females were 49.6% (N=119) and unknown sex were 4.6% (N=11).

During pre-fledge checks, 36 nests had either a lone nestling of known sex or all nestlings were the same sex. These clusters were not re-visited for post-fledge checks. The remaining 66 clusters were visited to assign a sex to the band combination of the banded birds. However, to ease the task of sexing the birds, juveniles were re-sighted until all fledglings could be assigned a sex. For example, if a nest at pre-fledge had 2 males and 1 female, re-sighting was done until the female was located and bands were observed or both males had been re-sighted and the band combinations were determined. Once all birds could be assigned a sex based on bands, re-sighting was discontinued for that group.

Translocation clusters were not randomly chosen and most RCW clusters had high numbers of suitable cavities and large group sizes. One group had only 2 adult RCWs, one group had 7 adult RCWs, one group had 6 adults, and most had 4-5 adults (group size was not recorded for all clusters).

During the fall translocation period 1-3 clusters were re-visited each morning and evening from September 13 through November 10, 2008. During this period 65 banded fledglings were re-sighted in the 68 total clusters visited. Of these 65 fledglings, 48 were found to have a roost cavity (5 of the 48 roosted in artificial inserts recently installed).

For translocation, 10 male and 10 female subadult RCWs were removed on the FMNF. The Military Ocean Terminal at Sunny Point (Brunswick County, NC) received 3 pairs of RCWs on October 7. Fort Jackson (Richland County, SC) received 4 pairs on October 22 and Okefenokee National Wildlife Refuge (Charlton/Ware/Clinch counties, GA) received 3 pairs on November 10. All recipient biologists reported successful transport and release of all birds and will document the translocation results in the 2009 breeding season.
Table 2. Population and monitoring demographics of the new SRTC red-cockaded woodpecker donor sites in 2008.

<table>
<thead>
<tr>
<th>Population Demographics</th>
<th>Osceola NF</th>
<th>Francis Marion NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Clusters</td>
<td>112</td>
<td>395</td>
</tr>
<tr>
<td>PBGs(^a)</td>
<td>103</td>
<td>378</td>
</tr>
<tr>
<td>Average % growth (2005-2008)</td>
<td>9%</td>
<td>4%</td>
</tr>
<tr>
<td>Monitored Clusters</td>
<td>115</td>
<td>126</td>
</tr>
<tr>
<td>Monitored PBGs</td>
<td>103</td>
<td>126</td>
</tr>
<tr>
<td>Birds translocated in 2008</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

\(^a\)Potential breeding groups

Discussion

Translocation Success

The first year of translocations from the new donor sites was, by all accounts, a huge success. The addition of 40 RCWs available for SRTC recipient properties went a long way toward alleviating the supply shortage and even created the opportunity for new populations in the cooperative to receive birds in 2008. This influx of donor birds also allowed recipient properties that were not slated to receive birds in 2008 to be allocated pairs while still remaining on the proposed list of recipients for 2009. These populations will especially benefit from the new donor populations because the accelerated rate of augmentation should bring them to 30 PBGs (and off the recipient list) ahead of schedule. The addition of the new donor populations has also highlighted the importance of these properties to RCW recovery. The combined contribution of birds from the ONF and FMNF represented 32% of the total available birds for the SRTC in 2008. The new donor populations will no doubt benefit from their new and significant regional role by the added value and support it gives to their RCW conservation, management and recovery programs.

Translocation Challenges

Although both the ONF and FMNF are qualified to be donor populations, differences in their recovery status and population demographics revealed the strengths of the FMNF and the challenges of recruiting from the ONF. The FMNF is considered a recovered population, having surpassed their goal of 350 PBGs in 2008. With 395 active clusters in 2008, the SERPPAS biologist was able to hand-pick a subset of RCW groups most suited to produce fledglings for translocation; i.e., PBGs with large group size. On the other hand, the Osceola/Okefenokee primary core population is not projected to achieve its recovery goal (350 PBGs) until 2030 or later (U.S. Fish and Wildlife Service 2003). In order to accomplish the same goal of contributing 20 birds to the SRTC, all active clusters needed to be monitored at the Osceola in order to supply enough subadults. Not surprisingly, the demographics of the pre-selected FMNF RCW groups and the ONF population showed notable differences in group size and reproduction. Exact group size counts were not done on the FMNF, but groups were selected based on the presence of 3 or more adults, therefore making the number of adults/monitored cluster greater than 3.
The ONF, on the other, had an average of 2.4 adults/active cluster. The FMNF also had larger broods (2.4 nestlings/successful nest) compared to the ONF’s population (1.9 nestlings/successful nest). These findings were not unexpected given the ONF’s rapid growth. However, it made locating suitable subadult males (which must come from groups with 2 or more males remaining) on the ONF more challenging.

Although the ONF population is not as robust as the FMNF population, the geographic differences between these forests underlined a clear initial benefit the ONF brings to the SRTC and potential issues regarding the more northern location of the FMNF. Location affects which properties these new donors can contribute to in the STRC. The ONF belongs to the South Atlantic Coastal Plain Recovery Unit and the FMNF is part of the Mid-Atlantic Coastal Plain Recovery Unit. Although these recovery units are adjacent to each other, the USFWS discourages translocation of RCWs between non-adjacent recovery units (USFWS 2003). The reasons for this policy are to: (1) maintain genetic integrity of the species, (2) support local adaptations of translocated birds, (3) minimize stress on birds, i.e., translocation time, (4) minimize logistical challenges, (5) minimize costs, and (6) preserve progress within recovery units.

A review of RCW translocation success rates by Edwards and Costa (2004) has questioned the importance of keeping birds in the same or similar physiographic province (i.e., recovery unit); however they still endorsed the current USFWS guidelines. Therefore, the populations that can receive birds from these forests are potentially limited by the recovery unit they belong to. Although the FMNF RCW population is approximately 3.5 times larger than the ONF’s population and more secure in its status as a donor, the ONF is, at this time, at a geographic advantage over the FMNF in serving the SRTC’s current recipient properties. Only 2 of the regularly scheduled recipients in 2008 met the criteria for receiving FMNF birds. On the other hand, 18 of the 20 recipients in 2008 could have taken ONF birds.

Turning Challenges into Opportunities

Although the ONF has only recently qualified as a donor population, its impressive 12% growth of active clusters from 2007-2008 supports its continued status in the SRTC and will offer more flexibility in how it meets the needs of the cooperative. The strong growth seen over the last year will allow the SERPPAS biologist to start hand-selecting clusters for translocation monitoring as early as spring 2009. This selection method should increase the number of PBGs and nests in the monitored subset, which will increase the recruitment pool for translocations. Hand-selecting clusters may not, however, change the average group size or number of fledglings/nest. These parameters may not increase until the ONF’s growth slows down and approaches carrying capacity like the FMNF. Fortunately, the estimation for ONF’s delisting may be conservative. The USFWS (2003) population trend expected for ONF in 2010 was 103 active clusters; however they have already surpassed it with 112 active clusters in 2008.

One of the consequences of the ONF’s smaller size has been the challenge of finding eligible males for translocation; however it has also been the seed for a budding volunteer
program. After posting a request for volunteers on the Florida Bird Conservation Initiative listserv, the ONF’s SERPPAS biologist received 20 respondents and over half became involved in the 2008 translocations. This posting found its way to local birding groups, such as the Four Rivers Audubon Society chapter in Lake City, Florida, as well as to people as far away as Arkansas. There was also excellent response from state and federal agency employees, specifically Florida Fish and Wildlife Conservation Commission and USFS. These agencies provided paid hours for employees to be involved and in one notable case a USFS intern stationed in Arkansas spent a week assisting in the final translocation with Babcock/Webb WMA. Recruiting volunteers for roosting and capturing birds not only aids in translocation preparations and supports the success of captures it also creates opportunities for community outreach and education on the recovery efforts of this endangered species. The participation of these volunteers helped make the first ONF translocation season a smooth operation and all ten of the allocated RCW males were successfully found and captured.

The issues presented by the FMNF’s location are quickly being met by the addition of new recipient properties. Fort Jackson in South Carolina and the Army’s Military Ocean Terminal at Sunny Point in North Carolina, both first time recipients in the SRTC in 2008, were able to receive birds from the FMNF during its first year as a donor. There is little concern over the FMNF finding viable recipients for their available birds since more recipient properties within the expanded region of the SRTC are expected to increase in 2009 in response to this new donor source. In particular, we hope that most of the numerous (N=6) South Carolina Department of Natural Resources properties with fewer than 30 PBGs, but capable of harboring more, will begin to participate in the SRTC in an effort to ensure viability of their small but critical RCW populations.

Host Forests

The host donor forests, ONF and FMNF, play a key role in this SERPPAS RCW conservation partnership. They provide logistical and financial support in the way of vehicles and fuel, office space, computer support, maps, access to RCW data bases, equipment and supplies as needed. Obviously the project could not be successfully conducted without the full administrative support of the host forests. We believe it is critical that prior to initiating these types of multi-partner conservation relationships a clear understanding of each partners needs, responsibilities and expectations are agreed upon. Once this operational foundation is in place, programs move forward efficiently, economically, and most important effectively and successfully. We believe we have achieved that point on both forests during this first year and we look forward to a long and productive partnership as we all move toward RCW recovery.

Universities

Our university partners, CU and UGA, have the challenge of providing the financial support that comes from various sources. Given the multi-state, multi-agency (state and federal) partners embedded in SERPPAS, meeting this challenge is no simple task. Fortunately, the Cooperative Ecosystems Study Unit (CESU) system provides a
mechanism for the DoD to transfer its funding to cooperating universities, which include CU and UGA, even if the monies are coming from different sources within DoD. The second year of funding is being provided by 4 of the 5 state SERPPAS partners, Florida, Georgia, Alabama and North Carolina. State funds, similar to DoD funds, are also coming from various sources both within and among the states. But again, established procedures, e.g., Cooperative Agreements, similar to the DoD/CESU relationship, exist to provide the means to transfer monies from state agencies to CU and UGA. Without these existing financial transfer programs in place, this RCW conservation project being implemented via SERPPAS would likely be impossible. With the exception of some initial delays in moving the monies from DoD to the universities and then to the biologists, the financial aspects of the project ran as smooth as can be expected during the first year of a new and complex financial partnership. We except that future years will operate even better now that we have the systems in place.

Conclusions

Despite the challenges faced by the new donor populations, the SERPPAS biologists were able to contribute the target goal of 40 RCWs to the SRTC in 2008; and the status of these forests as donor populations in 2009 remains solid. The importance of these additional birds to the cooperative can not be understated. The SRTC is nowhere near supplying enough birds to discontinue the alternating model and initiate an annual allocation or RCWs to all properties. Additionally, the net number of recipient properties is expected to grow with the regional expansion of the SRTC to include North Carolina and South Carolina. The creation of the two SERPPAS biologist positions has been a needed step towards advancing RCW recovery. The selected sites for these positions have tapped into the strong, healthy population of the under-utilized FMNF and have connected the emerging ONF population to the greater RCW community. With continued support and partnership funds, SERPPAS translocations will be a major contribution to RCW recovery.

Acknowledgments

We would like to thank the SERPPAS partnership for their funding and support during this first year of hopefully a long-term translocation partnership; especially Mr. Bruce Beard, Dr. Roel Lopez and others at DoD. We would also like to thank the staff at the USFS donor sites for hosting the SERPPAS biologists. Specifically we would like to thank the district ranger, Ivan Green on the Osceola National Forest and the district ranger, Orlando Sutton on the Francis Marion National Forest for their support and cooperation. SERPPAS funding is supported through CU and UGA; a special thank you to Dr. Pat Layton of CU and Dr. Bob Warren of UGA. Thanks also to David Fox and Joe Lauerman who assisted on the FMNF and ONF, respectively.

Translocations owe their success to the many recipient biologists and their staff and non-staff assistants who participated in the translocations:
Goethe State Forest: Charlie Pedersen, David Romano, Norberto Fernandez, Ulgonda Kirkpatrick, Robin Boughton, Brian Campsano and Bill Chitty

Ocala National Forest: Clayton Coates, Carrie Sekerak, Andrea Boliek and Jay Garcia

Bull Creek/Triple N Ranch: Michelle Wilcox, Mike Baranski, Wendy Wilsdon, Olivia Page, Alex Pries, Emily Brown

Babcock/Webb WMA: Wendy Wilsdon, Michelle Wilcox, Valerie Sparling, Ross Scott, Mike Baranski, Lauren Gilson and Ulgonda Kirkpatrick

Okefenokee NWR: Dean Easton, Sara Aicher, Laura Housh and Jessica Bowen

Military Ocean Terminal Sunny Point: Joe McGlinney

Fort Jackson: Nicole Chadwick, Julie Hovis, Josh Arrants and Jason Ayers

We would also like to thank the many volunteers involved in the 2008 translocations, including: Courtney Hooker, Stephanie Rousso, Pat Humphress, Russ Plummer, Walter Burlage, Scott Talley, Heather Venter, Kate Leonard, Anna Liner, Kris Cathey, Lauren Deaner, Sarah Thompson, Kristina Jackson and Elena Sachs.

References

14

